Skip to content

Chroma

ChromaVectorStore

Bases: BaseVectorStore

Vector store using Chroma.

This class provides an interface to interact with a Chroma vector store for document storage and retrieval.

Attributes:

Name Type Description
client ClientAPI

The Chroma client API instance.

index_name str

The name of the index or collection in the vector store.

_collection

The Chroma collection object.

Source code in dynamiq/storages/vector/chroma/chroma.py
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
class ChromaVectorStore(BaseVectorStore):
    """
    Vector store using Chroma.

    This class provides an interface to interact with a Chroma vector store for document storage and
    retrieval.

    Attributes:
        client (ClientAPI): The Chroma client API instance.
        index_name (str): The name of the index or collection in the vector store.
        _collection: The Chroma collection object.
    """

    def __init__(
        self,
        connection: Chroma | None = None,
        client: Optional["ClientAPI"] = None,
        index_name: str = "default",
        create_if_not_exist: bool = False,
    ):
        """
        Initialize the ChromaVectorStore.

        Args:
            connection (Chroma | None): A Chroma connection object. Defaults to None.
            client (Optional[ClientAPI]): A Chroma client API instance. Defaults to None.
            index_name (str): The name of the index or collection. Defaults to "default".
        """
        self.client = client
        if self.client is None:
            connection = connection or Chroma()
            self.client = connection.connect()
        self.index_name = index_name
        if create_if_not_exist:
            self._collection = self.client.get_or_create_collection(name=index_name)
        else:
            self._collection = self.client.get_collection(name=index_name)

    def count_documents(self) -> int:
        """
        Get the number of documents in the collection.

        Returns:
            int: The number of documents in the collection.
        """
        return self._collection.count()

    def write_documents(self, documents: list[Document]) -> int:
        """
        Write (or overwrite) documents into the store.

        This method processes a list of documents and writes them into the vector store.

        Args:
            documents (list[Document]): A list of Document objects to be written into the document
                store.

        Raises:
            ValueError: If an item in the documents list is not an instance of the Document class.

        Returns:
            int: The number of documents successfully written to the document store.
        """
        for doc in documents:
            if not isinstance(doc, Document):
                msg = (
                    "param 'documents' must contain a list of objects of type Document"
                )
                raise ValueError(msg)

            data = {"ids": [doc.id], "documents": [doc.content]}

            if doc.metadata:
                data["metadatas"] = [doc.metadata]

            if doc.embedding:
                data["embeddings"] = [doc.embedding]

            self._collection.add(**data)

        return len(documents)

    def delete_documents(self, document_ids: list[str] | None = None, delete_all: bool = False) -> None:
        """
        Delete documents from the vector store based on their IDs.

        Args:
            document_ids (list[str]): A list containing the IDs of documents to be deleted from the store.
            delete_all (bool): A flag to delete all documents from the store. Defaults to False.
        """

        if delete_all and self._collection is not None:
            self.client.delete_collection(name=self.index_name)
            self._collection = self.client.get_or_create_collection(
                name=self.index_name
            )
        else:
            if not document_ids:
                logger.warning(
                    "No document IDs provided. No documents will be deleted."
                )
            else:
                self._collection.delete(ids=document_ids)

    def delete_documents_by_filters(self, filters: dict[str, Any] | None = None) -> None:
        """
        Delete documents from the vector store based on the provided filters.

        Args:
            filters (dict[str, Any] | None): The filters to apply to the document list. Defaults to
                None.
        """
        if filters is None:
            raise ValueError("No filters provided. No documents will be deleted.")
        else:
            ids, where, where_document = self._normalize_filters(filters)
            self._collection.delete(ids=ids, where=where, where_document=where_document)

    def search_embeddings(
        self,
        query_embeddings: list[list[float]],
        top_k: int,
        filters: dict[str, Any] | None = None,
    ) -> list[list[Document]]:
        """
        Perform vector search on the stored documents using query embeddings.

        Args:
            query_embeddings (list[list[float]]): A list of embeddings to use as queries.
            top_k (int): The maximum number of documents to retrieve.
            filters (dict[str, Any] | None): A dictionary of filters to apply to the search.
                Defaults to None.

        Returns:
            list[list[Document]]: A list of lists containing documents that match the given filters,
                for each query embedding provided.
        """
        if filters is None:
            results = self._collection.query(
                query_embeddings=query_embeddings,
                n_results=top_k,
                include=["embeddings", "documents", "metadatas", "distances"],
            )
        else:
            chroma_filters = self._normalize_filters(filters=filters)
            results = self._collection.query(
                query_embeddings=query_embeddings,
                n_results=top_k,
                where=chroma_filters[1],
                where_document=chroma_filters[2],
                include=["embeddings", "documents", "metadatas", "distances"],
            )

        return self._query_result_to_documents(results)

    def filter_documents(self, filters: dict[str, Any] | None = None) -> list[Document]:
        """
        Retrieve documents that match the provided filters.

        Filters can be defined in two formats:
        1. Old format: Nested dictionaries with logical operators and comparison operators.
        2. New format: Nested dictionaries of Comparison and Logic types.

        For the new format:
        Comparison dictionaries must contain the following keys:
        - 'field': The name of one of the metadata fields of a document (e.g., 'metadata.years').
        - 'operator': One of '==', '!=', '>', '>=', '<', '<=', 'in', 'not in'.
        - 'value': A single value or (for 'in' and 'not in') a list of values.

        Logic dictionaries must contain the following keys:
        - 'operator': One of 'NOT', 'OR', 'AND'.
        - 'conditions': A list of Comparison or Logic dictionaries.

        Example of new format:
        {
            "operator": "AND",
            "conditions": [
              {
                "field": "metadata.years",
                "operator": "==",
                "value": "2019"
              },
              {
                "field": "metadata.companies",
                "operator": "in",
                "value": ["BMW", "Mercedes"]
              }
            ]
        }

        Args:
            filters (Dict[str, Any] | None): The filters to apply to the document list.
            filters (dict[str, Any] | None): The filters to apply to the document list. Defaults to
                None.

        Returns:
            list[Document]: A list of Document instances that match the given filters.
        """
        if filters:
            ids, where, where_document = self._normalize_filters(filters)
            kwargs: dict[str, Any] = {"where": where}

            if ids:
                kwargs["ids"] = ids
            if where_document:
                kwargs["where_document"] = where_document

            result = self._collection.get(**kwargs)
        else:
            raise ValueError(
                "No filters provided. No documents will be retrieved with filters."
            )

        return self._get_result_to_documents(result)

    def list_documents(self) -> list[Document]:
        """
        List all documents in the collection.

        Returns:
            list[Document]: A list of Document instances representing all documents in the collection.
        """
        result = self._collection.get()
        return self._get_result_to_documents(result)

    @staticmethod
    def _normalize_filters(
        filters: dict[str, Any]
    ) -> tuple[list[str], dict[str, Any], dict[str, Any]]:
        """
        Translate filters to Chroma filters.

        Args:
            filters (Dict[str, Any]): The filters to normalize.

        Returns:
            Tuple[List[str], Dict[str, Any], Dict[str, Any]]: A tuple containing:
                - A list of document IDs
                - A dictionary of 'where' conditions
                - A dictionary of 'where_document' conditions

        Raises:
            TypeError: If the 'filters' parameter is not a dictionary.
            ValueError: If the filter structure is invalid or contains unsupported operators.
        """
        if not isinstance(filters, dict):
            raise TypeError("'filters' parameter must be a dictionary")

        # Check if it's the new format
        if "operator" in filters or "conditions" in filters:
            processed_filters = ChromaVectorStore._process_filter_node(filters)
        else:
            # It's the old format, use the old processing method
            return ChromaVectorStore._process_old_filters(filters)

        ids = []
        where_document = {}

        # Extract 'id' and 'content' filters if present
        if "metadata.id" in processed_filters:
            ids = processed_filters["metadata.id"].get("$eq", [])
            del processed_filters["metadata.id"]

        if "content" in processed_filters:
            where_document["$contains"] = processed_filters["content"].get("$eq", "")
            del processed_filters["content"]

        where = processed_filters

        if "$and" in where and "$or" not in where:
            and_conditions = where["$and"]
            if len(and_conditions) == 1:
                where = and_conditions[0]
        if "$or" in where and "$and" not in where:
            or_conditions = where["$or"]
            if len(or_conditions) == 1:
                where = or_conditions[0]

        try:
            if where:
                from chromadb.api.types import validate_where

                validate_where(where)
            if where_document:
                from chromadb.api.types import validate_where_document

                validate_where_document(where_document)
        except ValueError as e:
            raise ValueError(e) from e

        return ids, where, where_document

    @staticmethod
    def _process_old_filters(
        filters: dict[str, Any]
    ) -> tuple[list[str], dict[str, Any], dict[str, Any]]:
        """
        Process filters in the old format.
        """
        ids = []
        where = defaultdict(list)
        where_document = defaultdict(list)
        keys_to_remove = []

        for field, value in filters.items():
            if field == "content":
                keys_to_remove.append(field)
                where_document["$contains"] = value
            elif field == "id":
                keys_to_remove.append(field)
                ids.append(value)
            elif isinstance(value, (list, tuple)):
                keys_to_remove.append(field)
                if len(value) == 0:
                    continue
                if len(value) == 1:
                    where[field] = value[0]
                    continue
                for v in value:
                    where["$or"].append({field: v})

        for k in keys_to_remove:
            del filters[k]

        final_where = dict(filters)
        final_where.update(dict(where))

        return ids, final_where, dict(where_document)

    @staticmethod
    def _process_filter_node(node: dict[str, Any]) -> dict[str, Any]:
        """
        Process a single node in the filter structure.

        Args:
            node (Dict[str, Any]): A dictionary representing a filter node.

        Returns:
            Dict[str, Any]: The processed filter node.

        Raises:
            ValueError: If the node structure is invalid.
        """
        if "operator" in node and "conditions" in node:  # Logic node
            return ChromaVectorStore._process_logic_node(node)
        elif (
            "field" in node and "operator" in node and "value" in node
        ):  # Comparison node
            return ChromaVectorStore._process_comparison_node(node)
        else:
            raise ValueError("Invalid filter node structure")

    @staticmethod
    def _process_logic_node(node: dict[str, Any]) -> dict[str, Any]:
        """
        Process a logic node in the filter structure.

        Args:
            node (Dict[str, Any]): A dictionary representing a logic node.

        Returns:
            Dict[str, Any]: The processed logic node.
        """
        operator = node["operator"].lower()
        conditions = [
            ChromaVectorStore._process_filter_node(condition)
            for condition in node["conditions"]
        ]
        return {f"${operator}": conditions}

    @staticmethod
    def _process_comparison_node(node: dict[str, Any]) -> dict[str, Any]:
        """
        Process a comparison node in the filter structure.

        Args:
            node (Dict[str, Any]): A dictionary representing a comparison node.

        Returns:
            Dict[str, Any]: The processed comparison node.

        Raises:
            ValueError: If the operator is unsupported.
        """
        field = node["field"]
        operator = node["operator"]
        value = node["value"]

        chroma_operator = CHROMA_OPERATOR_MAPPING.get(operator)

        if chroma_operator is None:
            raise ValueError(f"Unsupported operator: {operator}")

        return {field: {chroma_operator: value}}

    @staticmethod
    def _query_result_to_documents(result: "QueryResult") -> list[list[Document]]:
        """
        Convert Chroma query results into Dynamiq Documents.

        Args:
            result (QueryResult): The result from a Chroma query operation.

        Returns:
            list[list[Document]]: A list of lists containing Document objects created from the
                Chroma query result.
        """
        return_value: list[list[Document]] = []
        documents = result.get("documents")
        if documents is None:
            return return_value

        for i, answers in enumerate(documents):
            converted_answers = []
            for j in range(len(answers)):
                document_dict: dict[str, Any] = {
                    "id": result["ids"][i][j],
                    "content": documents[i][j],
                }

                if metadatas := result.get("metadatas"):
                    document_dict["metadata"] = dict(metadatas[i][j])

                if embeddings := result.get("embeddings"):
                    document_dict["embedding"] = embeddings[i][j]

                if distances := result.get("distances"):
                    document_dict["score"] = distances[i][j]

                converted_answers.append(Document(**document_dict))
            return_value.append(converted_answers)

        return return_value

    @staticmethod
    def _get_result_to_documents(result: "QueryResult") -> list[Document]:
        """
        Convert Chroma get result into Dynamiq Documents.

        Args:
            result (GetResult): The result from a Chroma get operation.

        Returns:
            list[Document]: A list containing Document objects created from the
                Chroma get result.
        """
        return_value: list[Document] = []
        documents = result.get("documents")
        if documents is None:
            return return_value

        for i, content in enumerate(documents):
            document_dict: dict[str, Any] = {
                "id": result["ids"][i],
                "content": content,
            }

            if metadatas := result.get("metadatas"):
                document_dict["metadata"] = dict(metadatas[i])

            if embeddings := result.get("embeddings"):
                document_dict["embedding"] = embeddings[i]

            if distances := result.get("distances"):
                document_dict["score"] = distances[i]

            return_value.append(Document(**document_dict))
        return return_value

__init__(connection=None, client=None, index_name='default', create_if_not_exist=False)

Initialize the ChromaVectorStore.

Parameters:

Name Type Description Default
connection Chroma | None

A Chroma connection object. Defaults to None.

None
client Optional[ClientAPI]

A Chroma client API instance. Defaults to None.

None
index_name str

The name of the index or collection. Defaults to "default".

'default'
Source code in dynamiq/storages/vector/chroma/chroma.py
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
def __init__(
    self,
    connection: Chroma | None = None,
    client: Optional["ClientAPI"] = None,
    index_name: str = "default",
    create_if_not_exist: bool = False,
):
    """
    Initialize the ChromaVectorStore.

    Args:
        connection (Chroma | None): A Chroma connection object. Defaults to None.
        client (Optional[ClientAPI]): A Chroma client API instance. Defaults to None.
        index_name (str): The name of the index or collection. Defaults to "default".
    """
    self.client = client
    if self.client is None:
        connection = connection or Chroma()
        self.client = connection.connect()
    self.index_name = index_name
    if create_if_not_exist:
        self._collection = self.client.get_or_create_collection(name=index_name)
    else:
        self._collection = self.client.get_collection(name=index_name)

count_documents()

Get the number of documents in the collection.

Returns:

Name Type Description
int int

The number of documents in the collection.

Source code in dynamiq/storages/vector/chroma/chroma.py
64
65
66
67
68
69
70
71
def count_documents(self) -> int:
    """
    Get the number of documents in the collection.

    Returns:
        int: The number of documents in the collection.
    """
    return self._collection.count()

delete_documents(document_ids=None, delete_all=False)

Delete documents from the vector store based on their IDs.

Parameters:

Name Type Description Default
document_ids list[str]

A list containing the IDs of documents to be deleted from the store.

None
delete_all bool

A flag to delete all documents from the store. Defaults to False.

False
Source code in dynamiq/storages/vector/chroma/chroma.py
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
def delete_documents(self, document_ids: list[str] | None = None, delete_all: bool = False) -> None:
    """
    Delete documents from the vector store based on their IDs.

    Args:
        document_ids (list[str]): A list containing the IDs of documents to be deleted from the store.
        delete_all (bool): A flag to delete all documents from the store. Defaults to False.
    """

    if delete_all and self._collection is not None:
        self.client.delete_collection(name=self.index_name)
        self._collection = self.client.get_or_create_collection(
            name=self.index_name
        )
    else:
        if not document_ids:
            logger.warning(
                "No document IDs provided. No documents will be deleted."
            )
        else:
            self._collection.delete(ids=document_ids)

delete_documents_by_filters(filters=None)

Delete documents from the vector store based on the provided filters.

Parameters:

Name Type Description Default
filters dict[str, Any] | None

The filters to apply to the document list. Defaults to None.

None
Source code in dynamiq/storages/vector/chroma/chroma.py
130
131
132
133
134
135
136
137
138
139
140
141
142
def delete_documents_by_filters(self, filters: dict[str, Any] | None = None) -> None:
    """
    Delete documents from the vector store based on the provided filters.

    Args:
        filters (dict[str, Any] | None): The filters to apply to the document list. Defaults to
            None.
    """
    if filters is None:
        raise ValueError("No filters provided. No documents will be deleted.")
    else:
        ids, where, where_document = self._normalize_filters(filters)
        self._collection.delete(ids=ids, where=where, where_document=where_document)

filter_documents(filters=None)

Retrieve documents that match the provided filters.

Filters can be defined in two formats: 1. Old format: Nested dictionaries with logical operators and comparison operators. 2. New format: Nested dictionaries of Comparison and Logic types.

For the new format: Comparison dictionaries must contain the following keys: - 'field': The name of one of the metadata fields of a document (e.g., 'metadata.years'). - 'operator': One of '==', '!=', '>', '>=', '<', '<=', 'in', 'not in'. - 'value': A single value or (for 'in' and 'not in') a list of values.

Logic dictionaries must contain the following keys: - 'operator': One of 'NOT', 'OR', 'AND'. - 'conditions': A list of Comparison or Logic dictionaries.

Example of new format: { "operator": "AND", "conditions": [ { "field": "metadata.years", "operator": "==", "value": "2019" }, { "field": "metadata.companies", "operator": "in", "value": ["BMW", "Mercedes"] } ] }

Parameters:

Name Type Description Default
filters Dict[str, Any] | None

The filters to apply to the document list.

None
filters dict[str, Any] | None

The filters to apply to the document list. Defaults to None.

None

Returns:

Type Description
list[Document]

list[Document]: A list of Document instances that match the given filters.

Source code in dynamiq/storages/vector/chroma/chroma.py
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
def filter_documents(self, filters: dict[str, Any] | None = None) -> list[Document]:
    """
    Retrieve documents that match the provided filters.

    Filters can be defined in two formats:
    1. Old format: Nested dictionaries with logical operators and comparison operators.
    2. New format: Nested dictionaries of Comparison and Logic types.

    For the new format:
    Comparison dictionaries must contain the following keys:
    - 'field': The name of one of the metadata fields of a document (e.g., 'metadata.years').
    - 'operator': One of '==', '!=', '>', '>=', '<', '<=', 'in', 'not in'.
    - 'value': A single value or (for 'in' and 'not in') a list of values.

    Logic dictionaries must contain the following keys:
    - 'operator': One of 'NOT', 'OR', 'AND'.
    - 'conditions': A list of Comparison or Logic dictionaries.

    Example of new format:
    {
        "operator": "AND",
        "conditions": [
          {
            "field": "metadata.years",
            "operator": "==",
            "value": "2019"
          },
          {
            "field": "metadata.companies",
            "operator": "in",
            "value": ["BMW", "Mercedes"]
          }
        ]
    }

    Args:
        filters (Dict[str, Any] | None): The filters to apply to the document list.
        filters (dict[str, Any] | None): The filters to apply to the document list. Defaults to
            None.

    Returns:
        list[Document]: A list of Document instances that match the given filters.
    """
    if filters:
        ids, where, where_document = self._normalize_filters(filters)
        kwargs: dict[str, Any] = {"where": where}

        if ids:
            kwargs["ids"] = ids
        if where_document:
            kwargs["where_document"] = where_document

        result = self._collection.get(**kwargs)
    else:
        raise ValueError(
            "No filters provided. No documents will be retrieved with filters."
        )

    return self._get_result_to_documents(result)

list_documents()

List all documents in the collection.

Returns:

Type Description
list[Document]

list[Document]: A list of Document instances representing all documents in the collection.

Source code in dynamiq/storages/vector/chroma/chroma.py
241
242
243
244
245
246
247
248
249
def list_documents(self) -> list[Document]:
    """
    List all documents in the collection.

    Returns:
        list[Document]: A list of Document instances representing all documents in the collection.
    """
    result = self._collection.get()
    return self._get_result_to_documents(result)

search_embeddings(query_embeddings, top_k, filters=None)

Perform vector search on the stored documents using query embeddings.

Parameters:

Name Type Description Default
query_embeddings list[list[float]]

A list of embeddings to use as queries.

required
top_k int

The maximum number of documents to retrieve.

required
filters dict[str, Any] | None

A dictionary of filters to apply to the search. Defaults to None.

None

Returns:

Type Description
list[list[Document]]

list[list[Document]]: A list of lists containing documents that match the given filters, for each query embedding provided.

Source code in dynamiq/storages/vector/chroma/chroma.py
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
def search_embeddings(
    self,
    query_embeddings: list[list[float]],
    top_k: int,
    filters: dict[str, Any] | None = None,
) -> list[list[Document]]:
    """
    Perform vector search on the stored documents using query embeddings.

    Args:
        query_embeddings (list[list[float]]): A list of embeddings to use as queries.
        top_k (int): The maximum number of documents to retrieve.
        filters (dict[str, Any] | None): A dictionary of filters to apply to the search.
            Defaults to None.

    Returns:
        list[list[Document]]: A list of lists containing documents that match the given filters,
            for each query embedding provided.
    """
    if filters is None:
        results = self._collection.query(
            query_embeddings=query_embeddings,
            n_results=top_k,
            include=["embeddings", "documents", "metadatas", "distances"],
        )
    else:
        chroma_filters = self._normalize_filters(filters=filters)
        results = self._collection.query(
            query_embeddings=query_embeddings,
            n_results=top_k,
            where=chroma_filters[1],
            where_document=chroma_filters[2],
            include=["embeddings", "documents", "metadatas", "distances"],
        )

    return self._query_result_to_documents(results)

write_documents(documents)

Write (or overwrite) documents into the store.

This method processes a list of documents and writes them into the vector store.

Parameters:

Name Type Description Default
documents list[Document]

A list of Document objects to be written into the document store.

required

Raises:

Type Description
ValueError

If an item in the documents list is not an instance of the Document class.

Returns:

Name Type Description
int int

The number of documents successfully written to the document store.

Source code in dynamiq/storages/vector/chroma/chroma.py
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
def write_documents(self, documents: list[Document]) -> int:
    """
    Write (or overwrite) documents into the store.

    This method processes a list of documents and writes them into the vector store.

    Args:
        documents (list[Document]): A list of Document objects to be written into the document
            store.

    Raises:
        ValueError: If an item in the documents list is not an instance of the Document class.

    Returns:
        int: The number of documents successfully written to the document store.
    """
    for doc in documents:
        if not isinstance(doc, Document):
            msg = (
                "param 'documents' must contain a list of objects of type Document"
            )
            raise ValueError(msg)

        data = {"ids": [doc.id], "documents": [doc.content]}

        if doc.metadata:
            data["metadatas"] = [doc.metadata]

        if doc.embedding:
            data["embeddings"] = [doc.embedding]

        self._collection.add(**data)

    return len(documents)