Skip to content

Firecrawl search

FirecrawlSearchInput

Bases: BaseModel

Schema exposed to agents using the Firecrawl search tool.

Source code in dynamiq/nodes/tools/firecrawl_search.py
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
class FirecrawlSearchInput(BaseModel):
    """Schema exposed to agents using the Firecrawl search tool."""

    model_config = ConfigDict(populate_by_name=True)

    query: str = Field(..., description="Search query to execute on Firecrawl.")
    limit: int | None = Field(default=None, ge=1, le=100, description="Maximum number of search results to return.")
    sources: list[SourceType] | None = Field(
        default=None, description="Result types to fetch: web/news/images with optional per-source options."
    )
    categories: list[CategoryType] | None = Field(
        default=None,
        description="Optional category filters for GitHub/research/PDF focused searches.",
    )
    tbs: str | None = Field(
        default=None,
        description="Time-based search filter (qdr:h/d/w/m/y or custom ranges like "
        "cdr:1,cd_min:12/1/2024,cd_max:12/31/2024).",
    )
    location: str | None = Field(
        default=None,
        description="Location string for search results (e.g., 'San Francisco,California,United States').",
    )
    country: str | None = Field(default=None, description="ISO country code for geo-targeting (e.g., 'US').")
    timeout: int | None = Field(default=None, description="Request timeout in milliseconds.")
    ignore_invalid_urls: bool | None = Field(
        default=None,
        alias="ignoreInvalidURLs",
        description="Exclude invalid URLs from search results when piping into other endpoints.",
    )

FirecrawlSearchTool

Bases: ConnectionNode

A tool for performing Firecrawl searches.

Source code in dynamiq/nodes/tools/firecrawl_search.py
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
class FirecrawlSearchTool(ConnectionNode):
    """A tool for performing Firecrawl searches."""

    group: Literal[NodeGroup.TOOLS] = NodeGroup.TOOLS
    name: str = "Firecrawl Search Tool"
    description: str = DESCRIPTION_FIRECRAWL_SEARCH
    connection: Firecrawl
    query: str | None = None

    limit: int = Field(default=5, ge=1, le=100, description="Number of results to request.")
    sources: list[SourceType] = Field(default_factory=lambda: [SourceWeb()], description="Result verticals to include.")
    categories: list[CategoryType] = Field(default_factory=list, description="Optional category filters.")
    tbs: str | None = Field(default=None, description="Time-based search filter passed to Firecrawl.")
    location: str | None = Field(default=None, description="Geographic bias for the search query.")
    country: str = Field(default="US", description="ISO country code for geo-targeting.")
    timeout: int = Field(default=60000, description="Request timeout in milliseconds.")
    ignore_invalid_urls: bool = Field(
        default=False,
        alias="ignoreInvalidURLs",
        description="Exclude invalid URLs from results to reduce downstream errors.",
    )
    input_schema: ClassVar[type[FirecrawlSearchInput]] = FirecrawlSearchInput
    model_config = ConfigDict(arbitrary_types_allowed=True, populate_by_name=True)

    MAX_DESCRIPTION_CHARS: ClassVar[int] = 300
    MAX_CONTENT_CHARS: ClassVar[int] = 800

    @staticmethod
    def _truncate(text: str | None, limit: int) -> str:
        """Trim text to the specified length."""
        if not text:
            return ""
        if len(text) <= limit:
            return text
        return text[:limit].rsplit(" ", 1)[0].rstrip("\n") + "..."

    def _build_search_payload(self, query: str, overrides: FirecrawlSearchInput) -> dict[str, Any]:
        """Construct the payload for the Firecrawl search API."""

        def resolve(field_name: str) -> Any:
            if hasattr(overrides, field_name):
                value = getattr(overrides, field_name)
                if value is not None:
                    return value
            return deepcopy(getattr(self, field_name, None))

        limit = resolve("limit") or 5
        sources = resolve("sources") or [SourceWeb()]

        payload = {
            "query": query,
            "limit": limit,
            "sources": [
                source.model_dump(exclude_none=True, by_alias=True) if isinstance(source, BaseModel) else source
                for source in sources
            ],
            "categories": resolve("categories"),
            "location": resolve("location"),
            "tbs": resolve("tbs"),
            "country": resolve("country"),
            "timeout": resolve("timeout"),
            "ignoreInvalidURLs": resolve("ignore_invalid_urls"),
        }

        return {k: v for k, v in payload.items() if v is not None}

    def _format_scraped_results(self, query: str, results: list[dict[str, Any]]) -> str:
        if not results:
            return f'## Firecrawl Search Results for "{query}"\nNo results returned.'

        sections = [f'## Firecrawl Search Results for "{query}"']
        for index, item in enumerate(results, start=1):
            title = item.get("title") or "Untitled result"
            url = item.get("url")
            description = self._truncate(item.get("description"), self.MAX_DESCRIPTION_CHARS)
            sections.append(f"### Result {index}: {title}")
            if url:
                sections.append(f"- URL: [{url}]({url})")
            if description:
                sections.append(f"- Description: {description}")

            for field, label in (("markdown", "Markdown"), ("summary", "Summary"), ("html", "HTML")):
                content = self._truncate(item.get(field), self.MAX_CONTENT_CHARS)
                if content:
                    sections.append(f"- {label}: {content}")

            if links := item.get("links"):
                link_lines = "\n".join(f"  * {link}" for link in links)
                sections.append(f"- Links:\n{link_lines}")

            sections.append("")

        return "\n".join(sections).strip()

    def _format_result_list(self, label: str, results: list[dict[str, Any]]) -> list[str]:
        if not results:
            return []

        section = [f"### {label}"]
        for index, item in enumerate(results, start=1):
            title = item.get("title") or "Untitled result"
            description = self._truncate(item.get("description") or item.get("snippet"), self.MAX_DESCRIPTION_CHARS)
            url = item.get("url") or item.get("imageUrl")

            if url:
                section.append(f"- {index}. [{title}]({url})")
            else:
                section.append(f"- {index}. {title}")
            if description:
                section.append(f"  - {description}")
        return section

    def _format_indexed_results(self, query: str, data: dict[str, Any]) -> str:
        sections = [f'## Firecrawl Search Results for "{query}"']
        sections.extend(self._format_result_list("Web Results", data.get("web", [])))
        sections.extend(self._format_result_list("News Results", data.get("news", [])))
        sections.extend(self._format_result_list("Image Results", data.get("images", [])))

        if len(sections) == 1:
            sections.append("No results returned.")

        return "\n".join(sections)

    def _format_agent_response(self, query: str, data: Any) -> str:
        """Format the response for agent consumption using Markdown."""
        if isinstance(data, list):
            return self._format_scraped_results(query, data)
        if isinstance(data, dict):
            return self._format_indexed_results(query, data)
        return f'## Firecrawl Search Results for "{query}"\nNo results returned.'

    def execute(
        self, input_data: FirecrawlSearchInput, config: RunnableConfig | None = None, **kwargs
    ) -> dict[str, Any]:
        """Execute the search tool with the provided input data."""
        logger.info(f"Tool {self.name} - {self.id}: started with input:\n{input_data.model_dump()}")

        config = ensure_config(config)
        self.run_on_node_execute_run(config.callbacks, **kwargs)

        query = input_data.query or self.query
        if not query:
            logger.error(f"Tool {self.name} - {self.id}: failed to get input data.")
            raise ValueError("Query is required for search")

        search_payload = self._build_search_payload(query, input_data)
        connection_url = urljoin(self.connection.url, "search")

        try:
            response = self.client.request(
                method=self.connection.method,
                url=connection_url,
                json=search_payload,
                headers=self.connection.headers,
            )
            response.raise_for_status()
            search_result = response.json()
        except Exception as e:
            logger.error(f"Tool {self.name} - {self.id}: failed to get results. Error: {str(e)}")
            raise ToolExecutionException(
                f"Tool '{self.name}' failed to execute the requested action. Error: {str(e)}. "
                f"Please analyze the error and take appropriate action.",
                recoverable=True,
            )

        data = search_result.get("data")
        if self.is_optimized_for_agents:
            result = self._format_agent_response(query, data)
        else:
            result = {"success": search_result.get("success", False), "query": query, "data": data}

        logger.info(f"Tool {self.name} - {self.id}: finished with result:\n{str(result)[:200]}...")

        return {"content": result}

execute(input_data, config=None, **kwargs)

Execute the search tool with the provided input data.

Source code in dynamiq/nodes/tools/firecrawl_search.py
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
def execute(
    self, input_data: FirecrawlSearchInput, config: RunnableConfig | None = None, **kwargs
) -> dict[str, Any]:
    """Execute the search tool with the provided input data."""
    logger.info(f"Tool {self.name} - {self.id}: started with input:\n{input_data.model_dump()}")

    config = ensure_config(config)
    self.run_on_node_execute_run(config.callbacks, **kwargs)

    query = input_data.query or self.query
    if not query:
        logger.error(f"Tool {self.name} - {self.id}: failed to get input data.")
        raise ValueError("Query is required for search")

    search_payload = self._build_search_payload(query, input_data)
    connection_url = urljoin(self.connection.url, "search")

    try:
        response = self.client.request(
            method=self.connection.method,
            url=connection_url,
            json=search_payload,
            headers=self.connection.headers,
        )
        response.raise_for_status()
        search_result = response.json()
    except Exception as e:
        logger.error(f"Tool {self.name} - {self.id}: failed to get results. Error: {str(e)}")
        raise ToolExecutionException(
            f"Tool '{self.name}' failed to execute the requested action. Error: {str(e)}. "
            f"Please analyze the error and take appropriate action.",
            recoverable=True,
        )

    data = search_result.get("data")
    if self.is_optimized_for_agents:
        result = self._format_agent_response(query, data)
    else:
        result = {"success": search_result.get("success", False), "query": query, "data": data}

    logger.info(f"Tool {self.name} - {self.id}: finished with result:\n{str(result)[:200]}...")

    return {"content": result}