Skip to content

Base

Agent

Bases: Node

Base class for an AI Agent that interacts with a Language Model and tools.

Source code in dynamiq/nodes/agents/base.py
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
class Agent(Node):
    """Base class for an AI Agent that interacts with a Language Model and tools."""

    AGENT_PROMPT_TEMPLATE: ClassVar[str] = AGENT_PROMPT_TEMPLATE

    llm: BaseLLM = Field(..., description="LLM used by the agent.")
    group: NodeGroup = NodeGroup.AGENTS
    error_handling: ErrorHandling = Field(default_factory=lambda: ErrorHandling(timeout_seconds=600))
    tools: list[Node] = []
    files: list[io.BytesIO | bytes] | None = None
    images: list[str | bytes | io.BytesIO] = None
    name: str = "Agent"
    max_loops: int = 1
    tool_output_max_length: int = TOOL_MAX_TOKENS
    tool_output_truncate_enabled: bool = True
    memory: Memory | None = Field(None, description="Memory node for the agent.")
    memory_limit: int = Field(100, description="Maximum number of messages to retrieve from memory")
    memory_retrieval_strategy: MemoryRetrievalStrategy | None = MemoryRetrievalStrategy.ALL
    verbose: bool = Field(False, description="Whether to print verbose logs.")

    input_message: Message | VisionMessage | None = None
    role: str | None = ""
    _prompt_blocks: dict[str, str] = PrivateAttr(default_factory=dict)
    _prompt_variables: dict[str, Any] = PrivateAttr(default_factory=dict)
    _mcp_servers: list[MCPServer] = PrivateAttr(default_factory=list)
    _mcp_server_tool_ids: list[str] = PrivateAttr(default_factory=list)

    model_config = ConfigDict(arbitrary_types_allowed=True)
    input_schema: ClassVar[type[AgentInputSchema]] = AgentInputSchema
    _json_schema_fields: ClassVar[list[str]] = ["role"]

    @classmethod
    def _generate_json_schema(
        cls, llms: dict[type[BaseLLM], list[str]] = {}, tools=list[type[Node]], **kwargs
    ) -> dict[str, Any]:
        """
        Generates full json schema for Agent with provided llms and tools.
        This schema is designed for compatibility with the WorkflowYamlParser,
        containing enough partial information to instantiate an Agent.
        Parameters name to be included in the schema are either defined in the _json_schema_fields class variable or
        passed via the fields parameter.

        It generates a schema using the provided LLMs and tools.

        Args:
            llms (dict[type[BaseLLM], list[str]]): Available llm providers and models.
            tools (list[type[Node]]): List of tools.

        Returns:
            dict[str, Any]: Generated json schema.
        """
        schema = super()._generate_json_schema(**kwargs)
        schema["properties"]["llm"] = {
            "anyOf": [
                {
                    "type": "object",
                    **llm._generate_json_schema(models=models, fields=["model", "temperature", "max_tokens"]),
                }
                for llm, models in llms.items()
            ],
            "additionalProperties": False,
        }

        schema["properties"]["tools"] = {
            "type": "array",
            "items": {"anyOf": [{"type": "object", **tool._generate_json_schema()} for tool in tools]},
        }

        schema["required"] += ["tools", "llm"]
        return schema

    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self._intermediate_steps: dict[int, dict] = {}
        self._run_depends: list[dict] = []
        self._prompt = Prompt(messages=[])

        expanded_tools = []
        for tool in self.tools:
            if isinstance(tool, MCPServer):
                self._mcp_servers.append(tool)
                subtools = tool.get_mcp_tools()
                expanded_tools.extend(subtools)
                self._mcp_server_tool_ids.extend([subtool.id for subtool in subtools])
            else:
                expanded_tools.append(tool)
        self.tools = expanded_tools

        self._init_prompt_blocks()

    @model_validator(mode="after")
    def validate_input_fields(self):
        if self.input_message:
            self.input_message.role = MessageRole.USER

        return self

    def get_context_for_input_schema(self) -> dict:
        """Provides context for input schema that is required for proper validation."""
        return {"input_message": self.input_message, "role": self.role}

    @property
    def to_dict_exclude_params(self):
        return super().to_dict_exclude_params | {
            "llm": True,
            "tools": True,
            "memory": True,
            "files": True,
            "images": True,
        }

    def to_dict(self, **kwargs) -> dict:
        """Converts the instance to a dictionary."""
        data = super().to_dict(**kwargs)
        data["llm"] = self.llm.to_dict(**kwargs)

        data["tools"] = [tool.to_dict(**kwargs) for tool in self.tools if tool.id not in self._mcp_server_tool_ids]
        data["tools"] = data["tools"] + [mcp_server.to_dict(**kwargs) for mcp_server in self._mcp_servers]

        data["memory"] = self.memory.to_dict(**kwargs) if self.memory else None
        if self.files:
            data["files"] = [{"name": getattr(f, "name", f"file_{i}")} for i, f in enumerate(self.files)]
        if self.images:
            data["images"] = [{"name": getattr(f, "name", f"image_{i}")} for i, f in enumerate(self.images)]
        return data

    def init_components(self, connection_manager: ConnectionManager | None = None):
        """
        Initialize components for the manager and agents.

        Args:
            connection_manager (ConnectionManager, optional): The connection manager. Defaults to ConnectionManager.
        """
        connection_manager = connection_manager or ConnectionManager()
        super().init_components(connection_manager)
        if self.llm.is_postponed_component_init:
            self.llm.init_components(connection_manager)

        for tool in self.tools:
            if tool.is_postponed_component_init:
                tool.init_components(connection_manager)
            tool.is_optimized_for_agents = True

    def sanitize_tool_name(self, s: str):
        """Sanitize tool name to follow [^a-zA-Z0-9_-]."""
        s = s.replace(" ", "-")
        sanitized = re.sub(r"[^a-zA-Z0-9_-]", "", s)
        return sanitized

    def _init_prompt_blocks(self):
        """Initializes default prompt blocks and variables."""
        self._prompt_blocks = {
            "date": "{date}",
            "tools": "{tool_description}",
            "files": "{file_description}",
            "instructions": "",
        }
        self._prompt_variables = {
            "tool_description": self.tool_description,
            "file_description": self.file_description,
            "date": datetime.now().strftime("%d %B %Y"),
        }

    def set_block(self, block_name: str, content: str):
        """Adds or updates a prompt block."""
        self._prompt_blocks[block_name] = content

    def set_prompt_variable(self, variable_name: str, value: Any):
        """Sets or updates a prompt variable."""
        self._prompt_variables[variable_name] = value

    def _prepare_metadata(self, input_data: dict) -> dict:
        """
        Prepare metadata from input data.

        Args:
            input_data (dict): Input data containing user information

        Returns:
            dict: Processed metadata
        """
        EXCLUDED_KEYS = {"user_id", "session_id", "input", "metadata", "files", "images", "tool_params"}
        custom_metadata = input_data.get("metadata", {}).copy()
        custom_metadata.update({k: v for k, v in input_data.items() if k not in EXCLUDED_KEYS})

        if "files" in custom_metadata:
            del custom_metadata["files"]
        if "images" in custom_metadata:
            del custom_metadata["images"]
        if "tool_params" in custom_metadata:
            del custom_metadata["tool_params"]

        user_id = input_data.get("user_id")
        session_id = input_data.get("session_id")

        if user_id:
            custom_metadata["user_id"] = user_id
        if session_id:
            custom_metadata["session_id"] = session_id

        return custom_metadata

    def execute(
        self,
        input_data: AgentInputSchema,
        input_message: Message | VisionMessage | None = None,
        config: RunnableConfig | None = None,
        **kwargs,
    ) -> dict[str, Any]:
        """
        Executes the agent with the given input data.
        """
        log_data = dict(input_data).copy()

        if log_data.get("images"):
            log_data["images"] = [f"image_{i}" for i in range(len(log_data["images"]))]

        if log_data.get("files"):
            log_data["files"] = [f"file_{i}" for i in range(len(log_data["files"]))]

        logger.info(f"Agent {self.name} - {self.id}: started with input {log_data}")
        self.reset_run_state()
        config = ensure_config(config)
        self.run_on_node_execute_run(config.callbacks, **kwargs)

        custom_metadata = self._prepare_metadata(dict(input_data))

        input_message = input_message or self.input_message or create_message_from_input(dict(input_data))
        input_message = input_message.format_message(**dict(input_data))

        use_memory = self.memory and (dict(input_data).get("user_id") or dict(input_data).get("session_id"))

        if use_memory:
            history_messages = self._retrieve_memory(dict(input_data))
            if len(history_messages) > 0:
                history_messages.insert(
                    0,
                    Message(
                        role=MessageRole.SYSTEM,
                        content="Below is the previous conversation history. "
                        "Use this context to inform your response.",
                    ),
                )
            if isinstance(input_message, Message):
                memory_content = input_message.content
            else:
                text_parts = [
                    content.text for content in input_message.content if isinstance(content, VisionMessageTextContent)
                ]
                memory_content = " ".join(text_parts) if text_parts else "Image input"
            self.memory.add(role=MessageRole.USER, content=memory_content, metadata=custom_metadata)
        else:
            history_messages = None

        if self.role:
            self._prompt_blocks["role"] = Template(self.role).render(**dict(input_data))

        files = input_data.files
        if files:
            self.files = files
            self._prompt_variables["file_description"] = self.file_description

        if input_data.tool_params:
            kwargs["tool_params"] = input_data.tool_params

        self._prompt_variables.update(dict(input_data))
        kwargs = kwargs | {"parent_run_id": kwargs.get("run_id")}
        kwargs.pop("run_depends", None)

        result = self._run_agent(input_message, history_messages, config=config, **kwargs)

        if use_memory:
            self.memory.add(role=MessageRole.ASSISTANT, content=result, metadata=custom_metadata)

        execution_result = {
            "content": result,
            "intermediate_steps": self._intermediate_steps,
        }
        logger.info(f"Node {self.name} - {self.id}: finished with RESULT:\n{str(result)[:200]}...")

        return execution_result

    def retrieve_conversation_history(
        self,
        user_query: str = None,
        user_id: str = None,
        session_id: str = None,
        limit: int = None,
        strategy: MemoryRetrievalStrategy = MemoryRetrievalStrategy.ALL,
    ) -> list[Message]:
        """
        Retrieves conversation history for the agent using the specified strategy.

        Args:
            user_query: Current user input to find relevant context (for RELEVANT/HYBRID strategies)
            user_id: Optional user identifier
            session_id: Optional session identifier
            limit: Maximum number of messages to return (defaults to memory_limit)
            strategy: Which retrieval strategy to use (ALL, RELEVANT, or HYBRID)

        Returns:
            List of messages forming a valid conversation context
        """
        if not self.memory or not (user_id or session_id):
            return []

        filters = {}
        if user_id:
            filters["user_id"] = user_id
        if session_id:
            filters["session_id"] = session_id

        limit = limit or self.memory_limit

        if strategy == MemoryRetrievalStrategy.RELEVANT and not user_query:
            logger.warning("RELEVANT strategy selected but no user_query provided - falling back to ALL")
            strategy = MemoryRetrievalStrategy.ALL

        conversation = self.memory.get_agent_conversation(
            query=user_query,
            limit=limit,
            filters=filters,
            strategy=strategy,
        )
        return conversation

    def _retrieve_memory(self, input_data: dict) -> list[Message]:
        """
        Retrieves memory messages when user_id and/or session_id are provided.
        """
        user_id = input_data.get("user_id")
        session_id = input_data.get("session_id")

        user_query = input_data.get("input", "")
        history_messages = self.retrieve_conversation_history(
            user_query=user_query,
            user_id=user_id,
            session_id=session_id,
            strategy=self.memory_retrieval_strategy,
        )
        logger.info("Agent %s - %s: retrieved %d messages from memory", self.name, self.id, len(history_messages))
        return history_messages

    def _run_llm(
        self, messages: list[Message | VisionMessage], config: RunnableConfig | None = None, **kwargs
    ) -> RunnableResult:
        """Runs the LLM with a given prompt and handles streaming or full responses.

        Args:
            messages (list[Message | VisionMessage]): Input messages for llm.
            config (Optional[RunnableConfig]): Configuration for the runnable.
            kwargs: Additional keyword arguments.

        Returns:
            RunnableResult: Generated response.
        """
        try:
            llm_result = self.llm.run(
                input_data={},
                config=config,
                prompt=Prompt(messages=messages),
                run_depends=self._run_depends,
                **kwargs,
            )
            self._run_depends = [NodeDependency(node=self.llm).to_dict()]
            if llm_result.status != RunnableStatus.SUCCESS:
                error_message = f"LLM '{self.llm.name}' failed: {llm_result.error.message}"
                raise ValueError({error_message})

            return llm_result

        except Exception as e:
            raise e

    def stream_content(
        self,
        content: str | dict,
        source: str,
        step: str,
        config: RunnableConfig | None = None,
        by_tokens: bool | None = None,
        **kwargs,
    ) -> str | dict:
        """
        Streams data.

        Args:
            content (str | dict): Data that will be streamed.
            source (str): Source of the content.
            step (str): Description of the step.
            by_tokens (Optional[bool]): Determines whether to stream content by tokens or not.
                If None it is determined based on StreamingConfig. Defaults to None.
            config (Optional[RunnableConfig]): Configuration for the runnable.
            **kwargs: Additional keyword arguments.

        Returns:
            str | dict: Streamed data.
        """
        if (by_tokens is None and self.streaming.by_tokens) or by_tokens:
            return self.stream_by_tokens(content=content, source=source, step=step, config=config, **kwargs)
        return self.stream_response(content=content, source=source, step=step, config=config, **kwargs)

    def stream_by_tokens(self, content: str, source: str, step: str, config: RunnableConfig | None = None, **kwargs):
        """Streams the input content to the callbacks."""
        if isinstance(content, dict):
            return self.stream_response(content, source, step, config, **kwargs)
        tokens = content.split(" ")
        final_response = []
        for token in tokens:
            final_response.append(token)
            token_with_prefix = " " + token
            token_for_stream = StreamChunk(
                choices=[
                    StreamChunkChoice(delta=StreamChunkChoiceDelta(content=token_with_prefix, source=source, step=step))
                ]
            )
            self.run_on_node_execute_stream(
                callbacks=config.callbacks,
                chunk=token_for_stream.model_dump(),
                **kwargs,
            )
        return " ".join(final_response)

    def stream_response(
        self, content: str | dict, source: str, step: str, config: RunnableConfig | None = None, **kwargs
    ):
        response_for_stream = StreamChunk(
            choices=[StreamChunkChoice(delta=StreamChunkChoiceDelta(content=content, source=source, step=step))]
        )

        self.run_on_node_execute_stream(
            callbacks=config.callbacks,
            chunk=response_for_stream.model_dump(),
            **kwargs,
        )
        return content

    def _run_agent(
        self,
        input_message: Message | VisionMessage,
        history_messages: list[Message] | None = None,
        config: RunnableConfig | None = None,
        **kwargs,
    ) -> str:
        """Runs the agent with the generated prompt and handles exceptions."""
        formatted_prompt = self.generate_prompt()
        system_message = Message(role=MessageRole.SYSTEM, content=formatted_prompt)
        if history_messages:
            self._prompt.messages = [system_message, *history_messages, input_message]
        else:
            self._prompt.messages = [system_message, input_message]

        try:
            llm_result = self._run_llm(self._prompt.messages, config=config, **kwargs).output["content"]
            self._prompt.messages.append(Message(role=MessageRole.ASSISTANT, content=llm_result))

            if self.streaming.enabled:
                return self.stream_content(
                    content=llm_result,
                    source=self.name,
                    step="answer",
                    config=config,
                    **kwargs,
                )
            return llm_result

        except Exception as e:
            raise e

    def _get_tool(self, action: str) -> Node:
        """Retrieves the tool corresponding to the given action."""
        tool = self.tool_by_names.get(self.sanitize_tool_name(action))
        if not tool:
            raise AgentUnknownToolException(
                f"Unknown tool: {action}."
                "Use only available tools and provide only the tool's name in the action field. "
                "Do not include any additional reasoning. "
                "Please correct the action field or state that you cannot answer the question."
            )
        return tool

    def _apply_parameters(self, merged_input: dict, params: dict, source: str, debug_info: list = None):
        """Apply parameters from the specified source to the merged input."""
        if debug_info is None:
            debug_info = []
        for key, value in params.items():
            if key in merged_input and isinstance(value, dict) and isinstance(merged_input[key], dict):
                merged_nested = merged_input[key].copy()
                merged_input[key] = deep_merge(value, merged_nested)
                debug_info.append(f"  - From {source}: Merged nested {key}")
            else:
                merged_input[key] = value
                debug_info.append(f"  - From {source}: Set {key}={value}")

    def _run_tool(self, tool: Node, tool_input: dict, config, **kwargs) -> Any:
        """Runs a specific tool with the given input."""
        if self.files:
            if tool.is_files_allowed is True:
                tool_input["files"] = self.files

        merged_input = tool_input.copy() if isinstance(tool_input, dict) else {"input": tool_input}
        raw_tool_params = kwargs.get("tool_params", ToolParams())
        tool_params = (
            ToolParams.model_validate(raw_tool_params) if isinstance(raw_tool_params, dict) else raw_tool_params
        )

        if tool_params:
            debug_info = []
            if self.verbose:
                debug_info.append(f"Tool parameter merging for {tool.name} (ID: {tool.id}):")
                debug_info.append(f"Starting with input: {merged_input}")

            # 1. Apply global parameters (lowest priority)
            global_params = tool_params.global_params
            if global_params:
                self._apply_parameters(merged_input, global_params, "global", debug_info)

            # 2. Apply parameters by tool name (medium priority)
            name_params = tool_params.by_name_params.get(tool.name, {}) or tool_params.by_name_params.get(
                self.sanitize_tool_name(tool.name), {}
            )
            if name_params:
                self._apply_parameters(merged_input, name_params, f"name:{tool.name}", debug_info)

            # 3. Apply parameters by tool ID (highest priority)
            id_params = tool_params.by_id_params.get(tool.id, {})
            if id_params:
                self._apply_parameters(merged_input, id_params, f"id:{tool.id}", debug_info)

            if self.verbose and debug_info:
                logger.debug("\n".join(debug_info))

        tool_result = tool.run(
            input_data=merged_input,
            config=config,
            run_depends=self._run_depends,
            **(kwargs | {"recoverable_error": True}),
        )
        self._run_depends = [NodeDependency(node=tool).to_dict()]
        if tool_result.status != RunnableStatus.SUCCESS:
            error_message = f"Tool '{tool.name}' failed: {tool_result.error.to_dict()}"
            if tool_result.error.recoverable:
                raise ToolExecutionException({error_message})
            else:
                raise ValueError({error_message})
        tool_result_content = tool_result.output.get("content")
        tool_result_content_processed = process_tool_output_for_agent(
            content=tool_result_content,
            max_tokens=self.tool_output_max_length,
            truncate=self.tool_output_truncate_enabled,
        )
        return tool_result_content_processed

    @property
    def tool_description(self) -> str:
        """Returns a description of the tools available to the agent."""
        return (
            "\n".join(
                [
                    f"{tool.name}:\n <{tool.name}_description>\n{tool.description.strip()}\n<\\{tool.name}_description>"
                    for tool in self.tools
                ]
            )
            if self.tools
            else ""
        )

    @property
    def file_description(self) -> str:
        """Returns a description of the files available to the agent."""
        if self.files:
            file_description = "You can work with the following files:\n"
            for file in self.files:
                name = getattr(file, "name", "Unnamed file")
                description = getattr(file, "description", "No description")
                file_description += f"<file>: {name} - {description} <\\file>\n"
            return file_description
        return ""

    @property
    def tool_names(self) -> str:
        """Returns a comma-separated list of tool names available to the agent."""
        return ",".join([self.sanitize_tool_name(tool.name) for tool in self.tools])

    @property
    def tool_by_names(self) -> dict[str, Node]:
        """Returns a dictionary mapping tool names to their corresponding Node objects."""
        return {self.sanitize_tool_name(tool.name): tool for tool in self.tools}

    def reset_run_state(self):
        """Resets the agent's run state."""
        self._intermediate_steps = {}
        self._run_depends = []

    def generate_prompt(self, block_names: list[str] | None = None, **kwargs) -> str:
        """Generates the prompt using specified blocks and variables."""
        temp_variables = self._prompt_variables.copy()
        temp_variables.update(kwargs)

        formatted_prompt_blocks = {}
        for block, content in self._prompt_blocks.items():
            if block_names is None or block in block_names:

                formatted_content = content.format(**temp_variables)
                if content:
                    formatted_prompt_blocks[block] = formatted_content

        prompt = Template(self.AGENT_PROMPT_TEMPLATE).render(formatted_prompt_blocks).strip()
        prompt = self._clean_prompt(prompt)
        return textwrap.dedent(prompt)

    def _clean_prompt(self, prompt_text):
        cleaned = re.sub(r"\n{3,}", "\n\n", prompt_text)
        return cleaned.strip()

file_description: str property

Returns a description of the files available to the agent.

tool_by_names: dict[str, Node] property

Returns a dictionary mapping tool names to their corresponding Node objects.

tool_description: str property

Returns a description of the tools available to the agent.

tool_names: str property

Returns a comma-separated list of tool names available to the agent.

execute(input_data, input_message=None, config=None, **kwargs)

Executes the agent with the given input data.

Source code in dynamiq/nodes/agents/base.py
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
def execute(
    self,
    input_data: AgentInputSchema,
    input_message: Message | VisionMessage | None = None,
    config: RunnableConfig | None = None,
    **kwargs,
) -> dict[str, Any]:
    """
    Executes the agent with the given input data.
    """
    log_data = dict(input_data).copy()

    if log_data.get("images"):
        log_data["images"] = [f"image_{i}" for i in range(len(log_data["images"]))]

    if log_data.get("files"):
        log_data["files"] = [f"file_{i}" for i in range(len(log_data["files"]))]

    logger.info(f"Agent {self.name} - {self.id}: started with input {log_data}")
    self.reset_run_state()
    config = ensure_config(config)
    self.run_on_node_execute_run(config.callbacks, **kwargs)

    custom_metadata = self._prepare_metadata(dict(input_data))

    input_message = input_message or self.input_message or create_message_from_input(dict(input_data))
    input_message = input_message.format_message(**dict(input_data))

    use_memory = self.memory and (dict(input_data).get("user_id") or dict(input_data).get("session_id"))

    if use_memory:
        history_messages = self._retrieve_memory(dict(input_data))
        if len(history_messages) > 0:
            history_messages.insert(
                0,
                Message(
                    role=MessageRole.SYSTEM,
                    content="Below is the previous conversation history. "
                    "Use this context to inform your response.",
                ),
            )
        if isinstance(input_message, Message):
            memory_content = input_message.content
        else:
            text_parts = [
                content.text for content in input_message.content if isinstance(content, VisionMessageTextContent)
            ]
            memory_content = " ".join(text_parts) if text_parts else "Image input"
        self.memory.add(role=MessageRole.USER, content=memory_content, metadata=custom_metadata)
    else:
        history_messages = None

    if self.role:
        self._prompt_blocks["role"] = Template(self.role).render(**dict(input_data))

    files = input_data.files
    if files:
        self.files = files
        self._prompt_variables["file_description"] = self.file_description

    if input_data.tool_params:
        kwargs["tool_params"] = input_data.tool_params

    self._prompt_variables.update(dict(input_data))
    kwargs = kwargs | {"parent_run_id": kwargs.get("run_id")}
    kwargs.pop("run_depends", None)

    result = self._run_agent(input_message, history_messages, config=config, **kwargs)

    if use_memory:
        self.memory.add(role=MessageRole.ASSISTANT, content=result, metadata=custom_metadata)

    execution_result = {
        "content": result,
        "intermediate_steps": self._intermediate_steps,
    }
    logger.info(f"Node {self.name} - {self.id}: finished with RESULT:\n{str(result)[:200]}...")

    return execution_result

generate_prompt(block_names=None, **kwargs)

Generates the prompt using specified blocks and variables.

Source code in dynamiq/nodes/agents/base.py
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
def generate_prompt(self, block_names: list[str] | None = None, **kwargs) -> str:
    """Generates the prompt using specified blocks and variables."""
    temp_variables = self._prompt_variables.copy()
    temp_variables.update(kwargs)

    formatted_prompt_blocks = {}
    for block, content in self._prompt_blocks.items():
        if block_names is None or block in block_names:

            formatted_content = content.format(**temp_variables)
            if content:
                formatted_prompt_blocks[block] = formatted_content

    prompt = Template(self.AGENT_PROMPT_TEMPLATE).render(formatted_prompt_blocks).strip()
    prompt = self._clean_prompt(prompt)
    return textwrap.dedent(prompt)

get_context_for_input_schema()

Provides context for input schema that is required for proper validation.

Source code in dynamiq/nodes/agents/base.py
382
383
384
def get_context_for_input_schema(self) -> dict:
    """Provides context for input schema that is required for proper validation."""
    return {"input_message": self.input_message, "role": self.role}

init_components(connection_manager=None)

Initialize components for the manager and agents.

Parameters:

Name Type Description Default
connection_manager ConnectionManager

The connection manager. Defaults to ConnectionManager.

None
Source code in dynamiq/nodes/agents/base.py
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
def init_components(self, connection_manager: ConnectionManager | None = None):
    """
    Initialize components for the manager and agents.

    Args:
        connection_manager (ConnectionManager, optional): The connection manager. Defaults to ConnectionManager.
    """
    connection_manager = connection_manager or ConnectionManager()
    super().init_components(connection_manager)
    if self.llm.is_postponed_component_init:
        self.llm.init_components(connection_manager)

    for tool in self.tools:
        if tool.is_postponed_component_init:
            tool.init_components(connection_manager)
        tool.is_optimized_for_agents = True

reset_run_state()

Resets the agent's run state.

Source code in dynamiq/nodes/agents/base.py
874
875
876
877
def reset_run_state(self):
    """Resets the agent's run state."""
    self._intermediate_steps = {}
    self._run_depends = []

retrieve_conversation_history(user_query=None, user_id=None, session_id=None, limit=None, strategy=MemoryRetrievalStrategy.ALL)

Retrieves conversation history for the agent using the specified strategy.

Parameters:

Name Type Description Default
user_query str

Current user input to find relevant context (for RELEVANT/HYBRID strategies)

None
user_id str

Optional user identifier

None
session_id str

Optional session identifier

None
limit int

Maximum number of messages to return (defaults to memory_limit)

None
strategy MemoryRetrievalStrategy

Which retrieval strategy to use (ALL, RELEVANT, or HYBRID)

ALL

Returns:

Type Description
list[Message]

List of messages forming a valid conversation context

Source code in dynamiq/nodes/agents/base.py
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
def retrieve_conversation_history(
    self,
    user_query: str = None,
    user_id: str = None,
    session_id: str = None,
    limit: int = None,
    strategy: MemoryRetrievalStrategy = MemoryRetrievalStrategy.ALL,
) -> list[Message]:
    """
    Retrieves conversation history for the agent using the specified strategy.

    Args:
        user_query: Current user input to find relevant context (for RELEVANT/HYBRID strategies)
        user_id: Optional user identifier
        session_id: Optional session identifier
        limit: Maximum number of messages to return (defaults to memory_limit)
        strategy: Which retrieval strategy to use (ALL, RELEVANT, or HYBRID)

    Returns:
        List of messages forming a valid conversation context
    """
    if not self.memory or not (user_id or session_id):
        return []

    filters = {}
    if user_id:
        filters["user_id"] = user_id
    if session_id:
        filters["session_id"] = session_id

    limit = limit or self.memory_limit

    if strategy == MemoryRetrievalStrategy.RELEVANT and not user_query:
        logger.warning("RELEVANT strategy selected but no user_query provided - falling back to ALL")
        strategy = MemoryRetrievalStrategy.ALL

    conversation = self.memory.get_agent_conversation(
        query=user_query,
        limit=limit,
        filters=filters,
        strategy=strategy,
    )
    return conversation

sanitize_tool_name(s)

Sanitize tool name to follow [^a-zA-Z0-9_-].

Source code in dynamiq/nodes/agents/base.py
428
429
430
431
432
def sanitize_tool_name(self, s: str):
    """Sanitize tool name to follow [^a-zA-Z0-9_-]."""
    s = s.replace(" ", "-")
    sanitized = re.sub(r"[^a-zA-Z0-9_-]", "", s)
    return sanitized

set_block(block_name, content)

Adds or updates a prompt block.

Source code in dynamiq/nodes/agents/base.py
448
449
450
def set_block(self, block_name: str, content: str):
    """Adds or updates a prompt block."""
    self._prompt_blocks[block_name] = content

set_prompt_variable(variable_name, value)

Sets or updates a prompt variable.

Source code in dynamiq/nodes/agents/base.py
452
453
454
def set_prompt_variable(self, variable_name: str, value: Any):
    """Sets or updates a prompt variable."""
    self._prompt_variables[variable_name] = value

stream_by_tokens(content, source, step, config=None, **kwargs)

Streams the input content to the callbacks.

Source code in dynamiq/nodes/agents/base.py
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
def stream_by_tokens(self, content: str, source: str, step: str, config: RunnableConfig | None = None, **kwargs):
    """Streams the input content to the callbacks."""
    if isinstance(content, dict):
        return self.stream_response(content, source, step, config, **kwargs)
    tokens = content.split(" ")
    final_response = []
    for token in tokens:
        final_response.append(token)
        token_with_prefix = " " + token
        token_for_stream = StreamChunk(
            choices=[
                StreamChunkChoice(delta=StreamChunkChoiceDelta(content=token_with_prefix, source=source, step=step))
            ]
        )
        self.run_on_node_execute_stream(
            callbacks=config.callbacks,
            chunk=token_for_stream.model_dump(),
            **kwargs,
        )
    return " ".join(final_response)

stream_content(content, source, step, config=None, by_tokens=None, **kwargs)

Streams data.

Parameters:

Name Type Description Default
content str | dict

Data that will be streamed.

required
source str

Source of the content.

required
step str

Description of the step.

required
by_tokens Optional[bool]

Determines whether to stream content by tokens or not. If None it is determined based on StreamingConfig. Defaults to None.

None
config Optional[RunnableConfig]

Configuration for the runnable.

None
**kwargs

Additional keyword arguments.

{}

Returns:

Type Description
str | dict

str | dict: Streamed data.

Source code in dynamiq/nodes/agents/base.py
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
def stream_content(
    self,
    content: str | dict,
    source: str,
    step: str,
    config: RunnableConfig | None = None,
    by_tokens: bool | None = None,
    **kwargs,
) -> str | dict:
    """
    Streams data.

    Args:
        content (str | dict): Data that will be streamed.
        source (str): Source of the content.
        step (str): Description of the step.
        by_tokens (Optional[bool]): Determines whether to stream content by tokens or not.
            If None it is determined based on StreamingConfig. Defaults to None.
        config (Optional[RunnableConfig]): Configuration for the runnable.
        **kwargs: Additional keyword arguments.

    Returns:
        str | dict: Streamed data.
    """
    if (by_tokens is None and self.streaming.by_tokens) or by_tokens:
        return self.stream_by_tokens(content=content, source=source, step=step, config=config, **kwargs)
    return self.stream_response(content=content, source=source, step=step, config=config, **kwargs)

to_dict(**kwargs)

Converts the instance to a dictionary.

Source code in dynamiq/nodes/agents/base.py
396
397
398
399
400
401
402
403
404
405
406
407
408
409
def to_dict(self, **kwargs) -> dict:
    """Converts the instance to a dictionary."""
    data = super().to_dict(**kwargs)
    data["llm"] = self.llm.to_dict(**kwargs)

    data["tools"] = [tool.to_dict(**kwargs) for tool in self.tools if tool.id not in self._mcp_server_tool_ids]
    data["tools"] = data["tools"] + [mcp_server.to_dict(**kwargs) for mcp_server in self._mcp_servers]

    data["memory"] = self.memory.to_dict(**kwargs) if self.memory else None
    if self.files:
        data["files"] = [{"name": getattr(f, "name", f"file_{i}")} for i, f in enumerate(self.files)]
    if self.images:
        data["images"] = [{"name": getattr(f, "name", f"image_{i}")} for i, f in enumerate(self.images)]
    return data

AgentManager

Bases: Agent

Manager class that extends the Agent class to include specific actions.

Source code in dynamiq/nodes/agents/base.py
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
class AgentManager(Agent):
    """Manager class that extends the Agent class to include specific actions."""

    _actions: dict[str, Callable] = PrivateAttr(default_factory=dict)
    name: str = "Agent Manager"
    input_schema: ClassVar[type[AgentManagerInputSchema]] = AgentManagerInputSchema

    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self._init_actions()

    def to_dict(self, **kwargs) -> dict:
        """Converts the instance to a dictionary."""
        data = super().to_dict(**kwargs)
        data["_actions"] = {
            k: getattr(action, "__name__", str(action))
            for k, action in self._actions.items()
        }
        return data

    def _init_actions(self):
        """Initializes the default actions for the manager."""
        self._actions = {
            "plan": self._plan,
            "assign": self._assign,
            "final": self._final,
            "handle_input": self._handle_input,
        }

    def add_action(self, name: str, action: Callable):
        """Adds a custom action to the manager."""
        self._actions[name] = action

    def get_context_for_input_schema(self) -> dict:
        """Provides context for input schema that is required for proper validation."""
        return {"actions": list(self._actions.keys())}

    def execute(
        self, input_data: AgentManagerInputSchema, config: RunnableConfig | None = None, **kwargs
    ) -> dict[str, Any]:
        """Executes the manager agent with the given input data and action."""
        log_data = dict(input_data).copy()

        if log_data.get("images"):
            log_data["images"] = [f"image_{i}" for i in range(len(log_data["images"]))]

        if log_data.get("files"):
            log_data["files"] = [f"file_{i}" for i in range(len(log_data["files"]))]

        logger.info(f"Agent {self.name} - {self.id}: started with input {log_data}")
        self.reset_run_state()
        config = config or RunnableConfig()
        self.run_on_node_execute_run(config.callbacks, **kwargs)

        action = input_data.action

        self._prompt_variables.update(dict(input_data))

        kwargs = kwargs | {"parent_run_id": kwargs.get("run_id")}
        kwargs.pop("run_depends", None)
        _result_llm = self._actions[action](config=config, **kwargs)
        result = {"action": action, "result": _result_llm}

        execution_result = {
            "content": result,
            "intermediate_steps": self._intermediate_steps,
        }
        logger.info(f"Agent {self.name} - {self.id}: finished with RESULT:\n{str(result)[:200]}...")

        return execution_result

    def _plan(self, config: RunnableConfig, **kwargs) -> str:
        """Executes the 'plan' action."""
        prompt = self._prompt_blocks.get("plan").format(**self._prompt_variables, **kwargs)
        llm_result = self._run_llm([Message(role=MessageRole.USER, content=prompt)], config, **kwargs).output["content"]

        return llm_result

    def _assign(self, config: RunnableConfig, **kwargs) -> str:
        """Executes the 'assign' action."""
        prompt = self._prompt_blocks.get("assign").format(**self._prompt_variables, **kwargs)
        llm_result = self._run_llm([Message(role=MessageRole.USER, content=prompt)], config, **kwargs).output["content"]

        return llm_result

    def _final(self, config: RunnableConfig, **kwargs) -> str:
        """Executes the 'final' action."""
        prompt = self._prompt_blocks.get("final").format(**self._prompt_variables, **kwargs)
        llm_result = self._run_llm(
            [Message(role=MessageRole.USER, content=prompt)], config, by_tokens=False, **kwargs
        ).output["content"]
        if self.streaming.enabled:
            return self.stream_content(
                content=llm_result,
                step="manager_final_output",
                source=self.name,
                config=config,
                by_tokens=False,
                **kwargs,
            )
        return llm_result

    def _handle_input(self, config: RunnableConfig, **kwargs) -> str:
        """
        Executes the single 'handle_input' action to either respond or plan
        based on user request complexity.
        """
        prompt = self._prompt_blocks.get("handle_input").format(**self._prompt_variables, **kwargs)
        llm_result = self._run_llm([Message(role=MessageRole.USER, content=prompt)], config, **kwargs).output["content"]
        return llm_result

add_action(name, action)

Adds a custom action to the manager.

Source code in dynamiq/nodes/agents/base.py
947
948
949
def add_action(self, name: str, action: Callable):
    """Adds a custom action to the manager."""
    self._actions[name] = action

execute(input_data, config=None, **kwargs)

Executes the manager agent with the given input data and action.

Source code in dynamiq/nodes/agents/base.py
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
def execute(
    self, input_data: AgentManagerInputSchema, config: RunnableConfig | None = None, **kwargs
) -> dict[str, Any]:
    """Executes the manager agent with the given input data and action."""
    log_data = dict(input_data).copy()

    if log_data.get("images"):
        log_data["images"] = [f"image_{i}" for i in range(len(log_data["images"]))]

    if log_data.get("files"):
        log_data["files"] = [f"file_{i}" for i in range(len(log_data["files"]))]

    logger.info(f"Agent {self.name} - {self.id}: started with input {log_data}")
    self.reset_run_state()
    config = config or RunnableConfig()
    self.run_on_node_execute_run(config.callbacks, **kwargs)

    action = input_data.action

    self._prompt_variables.update(dict(input_data))

    kwargs = kwargs | {"parent_run_id": kwargs.get("run_id")}
    kwargs.pop("run_depends", None)
    _result_llm = self._actions[action](config=config, **kwargs)
    result = {"action": action, "result": _result_llm}

    execution_result = {
        "content": result,
        "intermediate_steps": self._intermediate_steps,
    }
    logger.info(f"Agent {self.name} - {self.id}: finished with RESULT:\n{str(result)[:200]}...")

    return execution_result

get_context_for_input_schema()

Provides context for input schema that is required for proper validation.

Source code in dynamiq/nodes/agents/base.py
951
952
953
def get_context_for_input_schema(self) -> dict:
    """Provides context for input schema that is required for proper validation."""
    return {"actions": list(self._actions.keys())}

to_dict(**kwargs)

Converts the instance to a dictionary.

Source code in dynamiq/nodes/agents/base.py
929
930
931
932
933
934
935
936
def to_dict(self, **kwargs) -> dict:
    """Converts the instance to a dictionary."""
    data = super().to_dict(**kwargs)
    data["_actions"] = {
        k: getattr(action, "__name__", str(action))
        for k, action in self._actions.items()
    }
    return data

AgentStatus

Bases: str, Enum

Represents the status of an agent's execution.

Source code in dynamiq/nodes/agents/base.py
199
200
201
202
203
class AgentStatus(str, Enum):
    """Represents the status of an agent's execution."""

    SUCCESS = "success"
    FAIL = "fail"

StreamChunk

Bases: BaseModel

Model for streaming chunks with choices containing delta updates.

Source code in dynamiq/nodes/agents/base.py
193
194
195
196
class StreamChunk(BaseModel):
    """Model for streaming chunks with choices containing delta updates."""

    choices: list[StreamChunkChoice]

StreamChunkChoice

Bases: BaseModel

Stream chunk choice model.

Source code in dynamiq/nodes/agents/base.py
187
188
189
190
class StreamChunkChoice(BaseModel):
    """Stream chunk choice model."""

    delta: StreamChunkChoiceDelta

StreamChunkChoiceDelta

Bases: BaseModel

Delta model for content chunks.

Source code in dynamiq/nodes/agents/base.py
180
181
182
183
184
class StreamChunkChoiceDelta(BaseModel):
    """Delta model for content chunks."""
    content: str | dict
    source: str
    step: str